ERASMUS+ WEB-TECHNOLOGIES

Enriching lives, opening minds

www.confucius.by

YAROSHEVICH
Andrey Olegovich

wWWW.YAROSHEVICH.com
- ao@dot.net.by
P I-ESED +375 29 254-07-92

Programme of the E ean Union

http://www.yaroshevich.com/

=

Browser on
users
computer Web server
IS FNJASP.NET
Webforms
Visual
HTML css Stu d Io Programming

singlepage0.html

Single Page Applications

singlepage0.1.html

& Single Page 4 +

(@ File | /Users/cleggett/Documents/cs50/web_notes_files/6/singlepage.html

[Fage_.;l__'[Fageﬂ :[Fageﬂl

React/singlepage0.html
React/singlepage0.1.html

<html lang="en">

<head>
<title>Single Page</title> <script>
<s§¥$ez function showPage(page) {
display: none; // Hide all other pages
} document.querySelectorAll('div').forEach(div => {
</head> div.style.display = 'none’;
<body> </style> 1 y pLay
<button data-page="pagel">Page 1</button>
<button data-page="page2">Page 2</button> // Show requested page
<button data-page="page3">Page 3</button> document.querySelector (" #${page}).style.display = 'block';
<div id="pagel"> }
<h1>This is page 1.</hl>
</div> document.addEventListener('DOMContentLoaded"’, function() {
<div id="page2"> document.querySelectorAll('button').forEach(button => {
<h1>This is page 2.</h1> button.onclick = function() {
</div> showPage(this.dataset.page);
<div id="page3"> }s
<h1>This is page 3.</h1> 1)
</div> 1)
</body> </script>

</html>

Imperative programming

View:

<h1>0</h1>

Logic:

let num = parselnt(.querySelector("h1").innerHTML);

num +=1;
document.querySelector("n1").innerHTML = num;

@ React

Declarative programming
View:
<h1>{numj}</h1>

Logic:

num += 1;

Component

My Cegmpdnent

prop="My Value"

<span M}r’ value_ /spanz

To use React, we’ll have to import three JavaScript Packages:

React: Defines components and their behavior
<script src= "https://unpkg.com/react@16/umd/react.production.min.js"></script>

ReactDOM: Takes React components and inserts them into the DOM

<script src= "https://unpkg.com/react-dom@ 16/umd/react-dom.production.min.js">
</script>

Babel: Translates from JSX, the language in which we’ll write in React, to
plain JavaScript that our browsers can interpret.

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

In the three lines above the title, we import the
ReactDOM.render 01.htm latest versions of React, ReactDOM, and Babel.

<html lang="en">
<title>Test React</title>

<script src= "https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@ 16/umd/react-dom.production.min.js">
</script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
<body> In the body, we include a single div with an id of app.
<div id="id01">SBMT</div>

<script type="text/babel">
ReactDOM.render(
<h1>School of Business</h1>,
document.getElementByld('id01"));
</script>

</body>
</html>

https://asp.net.by/React/01.htm

In the three lines above the title, we import the
Component App 01.1.htm latest versions of React, ReactDOM, and Babel.

<html lang="en">
<title>Test React</title>

<script src= "https://unpkg.com/react@16/umd/react.production.min.js"></script>

<script src= "https://unpkg.com/react-dom@ 16/umd/react-dom.production.min.js">
</script>

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
<body> In the body, we include a single div with an id of app.
<div id="id01">SBMT</div>

<script type="text/babel">
function App() {
return (
<h1>School of Business</h1>);

We create a component called App.
Components in React can be represented by JavaScript
functions.

}
ReactDOM.render(<App />, document.getElementByld('id01"));

</script>

</body>
</html>

https://asp.net.by/React/01.1.htm

function SB_CN(props) {
return (

<h1>AEZHEIIAFEFFRk</h1>
);

function SB_EN(props) {
return (
<h1>School of Business BSU</h1>

);

01.2.htm

function App() {
return (
<div>

<SB_CN />
<SB_EN />

</div>

https://asp.net.by/React/01.2.htm

https://asp.net.by/React/01.3.htm

props in React

function SB(props) {
return (
<h1>{props.text}</h1>

);
}

}
function App() {

return (
<div>
<SBtext="H{#HZ TE U AXFZEFT" />
<SB text="School of Business BSU:” />
</div>
);
}

https://asp.net.by/React/01.3.htm

<div id="app"></div>
<script type="text/babel">

function App() {

updateCount
function.

setCount

https://asp.net.by/React/01.5.htm

inside App component,

we’ll use

React.useState hook

to add state to our component.

const [count, setCount] = React.useState(9);

function updateCount() { ‘\\\\\\\\\\\\\\
» setCount(count + 1);

function,

can take as
argument a
new value for
the state.

}

»

} The argument to useState is the initial value of the state. which we’ll set to 0.

Now, we can work on what the function will
render, where we’ll specify

return (
<div> a header
<h1>{count}</h1> a_______,__—————*“““““———gﬁﬂﬂ—”ﬂ_ and
.<button onClick={updateCount}>Count</button> ., ion. We'll also add an event listener for when
</div> the button is clicked, which React handles using
) the onClick attribute:

ReactDOM.render (<App />, document.querySelector("#app"));
</script>

https://asp.net.by/React/01.5.htm

Game “Binary Logarithm”

Link

React/Log2.htm

const [, setState] = React.useState({

> numl: 1,
The number response: "",

A

2 to the power of X What the user has typed in like X

score: 9,

incorrect: m How many gquestions the user has answered correctly.
})s
return (using the values in the state, we can render a basic user interface.
<div>
<div className={ .incorrect ? "incorrect" : ""} id="problem">
Lb({state.num1})= <input onKeyPress={inputKeyPress} onChange={updateResponse} autoFocus={true}
value={ .response} />
</div> .
Lb(1 024)= ‘10 ‘ function updateResponse(event) {
Score: 9 setState({
<div>Score: { .score}</div> / r.‘(.a;ponse): event.target.value
</div> onChange attribute to the ir });
) element, and set it equal to . }

function called updateResponse

takes in the event that triggered the function

\

function updateResponse(event) {
setState({

e o o ,

response: event.target.value

})s

sets the response to the current value of the input.

function inputKeyPress(event) {

if (event.key === "Enter") {
}) _—— const answer = parselnt(state.response);
check whether the "Enter” key was pressed if (answer === Math.log2(state.numl)) {
// User got question right
check to see if the answer is correct setState({
/ increase the score by 1
J
score: .score + 1,
onKeyPress={inputKe' _ response: "",
numl: 2**(Math.ceil(Math.random() * 10)),
\\\\\ incorrect: false
— | 1)
Lb(1024) E_ } else {// User got question wrong
Score: setState({
J
score: .score - 1,
response: "",

incorrect: true

})

<style>
#app {
text-align: center;
font-family: sans-serif;

}
#problem {
font-size: 20px;
}
#winner {
font-size: 72px; '
You won!
}

.incorrect {
color: red;

} Lb(1)=

</style> Score: -1

function renderWinScreen() {

return (
if (state.score === 18) { ’f’///,,,,/~f-””’ <div id="winner">You won!</div>
return renderWinScreen();)
1} else { }
return renderProblem();
}
function renderProblem()
{
return (
<div>
<div className={ .incorrect ? "incorrect" : ""} id="problem">
Lb({state.num1})= <input onKeyPress={inputKeyPress} onChange={updateResponse}
autoFocus={true} value={ .-response} />
</div>
<div>Score: { .score}</div>

</div>

¥

Let’s take a look at our application!

http://www.confucius.by/React/Log2.htm

React/Log2.htm

http://asp.net.by/React/02.htm
<div id="id01">SBMT</div>
<script type="text/babel">
const name='Business’;
ReactDOM.render(
<h1>School of {name}</h1>,
document.getElementByld('id01'));
</script>

http://asp.net.by/React/02.htm

http://asp.net.by/React/03.htm

<body>

<div id="root"></div>

<script type="text/babel">
ReactDOM.render(<h1>School of
document.getElementByld(‘root"));
</script>

</body>

business</h1>,

http://asp.net.by/React/03.htm

https://asp.net.by/React/04.htm

<div id="root"></div> 21:15:08

<script type="text/babel">

function tick() {

const element=(<i>{new

Date().toLocaleTimeString()}</i>);

ReactDOM.render(element,
document.getElementByld(‘root'));

}

setinterval(tick, 3000);
</script>

https://asp.net.by/React/04.htm

React components = JavaScript functions

https://asp.net.by/React/05.htm

<div id="root">SBMT</div>
<script type="text/babel">
function Business() {
return <h1>School of Business!</h1>;
}
ReactDOM.render(<Business />, document.getElementByld('root"));
</script>

https://asp.net.by/React/05.htm

http://asp.net.by/Projects/1/1.3.D0MContentLoaded.htm

<IDOCTYPE html> counter.js
<html lang="en"> let counter = 0;
<head> function count() {
<title>Count</title> counter++;
<SCri ot src:"counter.js"><lscri pt> document.querySelector('n1’).innerHTML = counter;
</head> }
<body> }
<h1>0</h1> document.addEventListener('DOMContentLoaded’,
<button>Count</button> 1:ur::i((:)tclEl)rr;(grgt.querySeIector('button').oncli(:k = count;
</body> p;

</html|>

http://asp.net.by/Projects/1/1.3.DOMContentLoaded.htm

<body> function App() {

<div id="app"></div> const [count, setCount] = React.useState(0);

<script type="text/babel"> function updateCount() {

setCount(count + 1);
}

return (
<div>
<h1>{count}</h1>

<button onClick={updateCount}>Count</button>

</div>
);
}
ReactDOM.render(<App />, document.querySelector("#app"));
</script>
</body>

</html>

